WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis.

نویسندگان

  • Pierre Broun
  • Patricia Poindexter
  • Erin Osborne
  • Cai-Zhong Jiang
  • José Luis Riechmann
چکیده

Epicuticular wax forms a layer of hydrophobic material on plant aerial organs, which constitutes a protective barrier between the plant and its environment. We report here the identification of WIN1, an Arabidopsis thaliana ethylene response factor-type transcription factor, which can activate wax deposition in overexpressing plants. We constitutively expressed WIN1 in transgenic Arabidopsis plants, and found that leaf epidermal wax accumulation was up to 4.5-fold higher in these plants than in control plants. A significant increase was also found in stems. Interestingly, approximately 50% of the additional wax could only be released by complete lipid extractions, suggesting that not all of the wax is superficial. Gene expression analysis indicated that a number of genes, such as CER1, KCS1, and CER2, which are known to be involved in wax biosynthesis, were induced in WIN1 overexpressors. This observation indicates that induction of wax accumulation in transgenic plants is probably mediated through an increase in the expression of genes encoding enzymes of the wax biosynthesis pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri.

The waxy plant cuticle protects cells from dehydration, repels pathogen attack, and prevents organ fusion during development. The transcription factor WAX INDUCER1/SHINE1 (WIN1/SHN1) regulates the biosynthesis of waxy substances in Arabidopsis thaliana. Here, we show that the MIXTA-like MYB transcription factors MYB106 and MYB16, which regulate epidermal cell morphology, also regulate cuticle d...

متن کامل

The transcription factor WIN1/SHN1 regulates Cutin biosynthesis in Arabidopsis thaliana.

The composition and permeability of the cuticle has a large influence on its ability to protect the plant against various forms of biotic and abiotic stress. WAX INDUCER1 (WIN1) and related transcription factors have recently been shown to trigger wax production, enhance drought tolerance, and modulate cuticular permeability when overexpressed in Arabidopsis thaliana. We found that WIN1 influen...

متن کامل

Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis.

To learn more about the role of the CER6 condensing enzyme in Arabidopsis surface wax production, we determined CER6 transcription domains and the timing of CER6 transcription in vegetative and reproductive structures from juvenile, mature, and senescing tissues. We found that CER6 is highly transcribed throughout development, exclusively in the epidermal cells in all tissues examined. The only...

متن کامل

The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis.

Drought stress activates several defense responses in plants, such as stomatal closure, maintenance of root water uptake, and synthesis of osmoprotectants. Accumulating evidence suggests that deposition of cuticular waxes is also associated with plant responses to cellular dehydration. Yet, how cuticular wax biosynthesis is regulated in response to drought is unknown. We have recently reported ...

متن کامل

Arabidopsis Cuticular Wax Biosynthesis Is Negatively Regulated by the DEWAX Gene Encoding an AP2/ERF-Type Transcription FactorW

The aerial parts of plants are protected from desiccation and other stress by surface cuticular waxes. The total cuticular wax loads and the expression of wax biosynthetic genes are significantly downregulated in Arabidopsis thaliana under dark conditions. We isolated Decrease Wax Biosynthesis (DEWAX), which encodes an AP2/ERF-type transcription factor that is preferentially expressed in the ep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 13  شماره 

صفحات  -

تاریخ انتشار 2004